Quantum field theories, Markov random fields and machine learning
نویسندگان
چکیده
The transition to Euclidean space and the discretization of quantum field theories on spatial or space-time lattices opens up opportunity investigate probabilistic machine learning within theory. Here, we will discuss how discretized theories, such as $\phi^{4}$ lattice theory a square lattice, are mathematically equivalent Markov fields, notable class graphical models with applications in variety research areas, including learning. results established based Hammersley-Clifford theorem. We then derive neural networks from pertinent minimization Kullback-Leibler divergence for probability distribution algorithms other distributions.
منابع مشابه
Learning Heterogeneous Hidden Markov Random Fields
Hidden Markov random fields (HMRFs) are conventionally assumed to be homogeneous in the sense that the potential functions are invariant across different sites. However in some biological applications, it is desirable to make HMRFs heterogeneous, especially when there exists some background knowledge about how the potential functions vary. We formally define heterogeneous HMRFs and propose an E...
متن کاملMarkov Random Fields and Conditional Random Fields
Markov chains provided us with a way to model 1D objects such as contours probabilistically, in a way that led to nice, tractable computations. We now consider 2D Markov models. These are more powerful, but not as easy to compute with. In addition we will consider two additional issues. First, we will consider adding observations to our models. These observations are conditioned on the value of...
متن کاملLearning Causally Linked Markov Random Fields
We describe a learning procedure for a generative model that contains a hidden Markov Random Field (MRF) which has directed connections to the observable variables. The learning procedure uses a variational approximation for the posterior distribution over the hidden variables. Despite the intractable partition function of the MRF, the weights on the directed connections and the variational app...
متن کاملStructure Learning in Markov Random Fields
Scoring structures of undirected graphical models by means of evaluating the marginal likelihood is very hard. The main reason is the presence of the partition function which is intractable to evaluate, let alone integrate over. We propose to approximate the marginal likelihood by employing two levels of approximation: we assume normality of the posterior (the Laplace approximation) and approxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2022
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2207/1/012056